

S0960-894X(96)00167-9

DESIGN, SYNTHESIS, AND ANTITUMOR ACTIVITY OF BICYCLIC AND ISOMERIC ANALOGUES OF ILLUDIN M

Frederick R. Kinder, Jr.,* Run-Ming Wang, William E. Bauta, and Kenneth W. Bair

Oncology Research Program, Preclinical Research, Sandoz Research Institute, Sandoz Pharmaceuticals Corporation, East Hanover, New Jersey, 07936-1080, USA

Abstract: Novel bicyclic and isomeric analogues of the cytotoxic sesquiterpine illudin M were prepared using 1,3-dipolar cycloaddition reactions. Nearly every analogue investigated demonstrated low μM IC₅₀ values when tested in a panel of four human tumor cell lines. Copyright © 1996 Elsevier Science Ltd

The illudins comprise a class of cytotoxic sesquiterpenes produced by the fungus *Omphalotus illudens*.¹⁻⁴ Illudins M (1a) and S (1b) were reported to be preferentially cytotoxic *in vitro* to a variety of human tumor cell lines. Selective toxicity was attributed to rapid uptake of the illudins by cells in an energy dependent process.⁵ Once inside tumor cells illudins are activated metabolically to a reactive intermediate that binds to DNA.⁶⁻⁸ While 1a and 1b lack an *in vivo* therapeutic window, the semisynthetic illudin derivatives dehydroilludin M (2) and acylfulvene (3) possess greatly improved *in vivo* efficacy against a number of adenocarcinomas.⁹

1a X = H 1b X = OH

2

Existing illudin analogue structure-activity relationship (SAR) studies have been limited to the native illudins and some semisynthetic derivatives. The spirocyclopropane and unsaturated ketone most likely constitute a biselectophile that either directly or indirectly causes DNA damage. Previous SAR efforts on existing semisynthetic illudin analogues have shown that the array of functional groups that comprise 4 is essential for antitumor activity.⁶ Herein, SAR studies of the first totally synthetic illudin analogues are reported.

Bicyclic illudin analogues 5-11 were chosen to determine whether antitumor activity is maintained in the absence of the fused cyclopentane ring. Furthermore, the control of lipophilicity and chemical reactivity was investigated through substituents (R) that varied in size, shape, and electron delocalizing ability. In addition to the bicyclic illudins, isodehydroilludin M (12) was chosen to elucidate the spatial requirement of the two electrophilic centers for antitumor activity. Compound 12 is unlike any natural illudin or illudin analogue in that the two putative sites for bionucleophillic attack are adjacent to one another.

The synthesis of 5-11 follows the same strategy that was employed in the total synthesis of (\pm) -illudin M.¹⁰ Oxabicyclo[2.2.1]heptane 14 was prepared in 80% yield from diazoketone 13 and propargyl chloride. The reaction proceeds through a Rh₂(OAc)₄-catalyzed carbonyl ylide 1,3-dipolar cycloaddition reaction with complete regioselectivity.¹¹ Treatment of cycloadduct 14 with methylmagnesium chloride gave tertiary alcohol 15 in 75% yield. Vinylogous acid chloride 5 was prepared in two steps from 15. LDA-mediated allylic proton abstraction and subsequent oxo-bridge opening of 15 gave vicinol diol 17 (R = Cl) in 67% yield. Oxidation of 17 with (PPh₃)₃Ru(II)Cl (50 mole %) and N-methylmorpholine-N-oxide (NMO) (5 equiv) gave 5 in 44% yield. Analogues 6-11 were prepared in three or four steps from 15. Treatment of 15 with the corresponding alkyl- or arylmagnesium bromide (RMgBr) gave 16 in 70-90% yield. Reaction of n-BuLi (2 equiv) and 16 resulted in allylic proton abstraction and oxo-bridge opening which gave diols 17 in good yield. All exocyclic alkenes 17

were determined by nmr to be the E configuration. Oxidation as described above furnished the desired hydroxyketones in 30-50% yield. In the case of homopropargyllic alcohol 11, where RMgBr = TMDMSOCH₂CH₂C≡CMgBr, the TBDMS protecting group was removed with HF/CH₃CN following oxidation.¹²

Scheme 1: (a) Rh₂(OAc)₄ (cat.), propargyl chloride, rt, 80%; (b) MeMgCl, THF, 0 °C-rt, 75%; (c) RMgBr, THF, 0 °C-rt, 70-90%; (d) for R = Cl: LDA, -78 °C-rt, 67%; for R = alkyl or aryl: n-BuLi, -78 °C-rt, 70-90%; (e) (PPh₃)₃Ru(II)Cl₂ (50 mole %), NMO, rt, 30-50%.

The synthesis of 12 is described in Scheme 2. Illudane 19 was prepared in three steps from cyclopentenone 18 in the same manner that was reported earlier. PCC oxidation of 19 furnished illudin derivative 20 in 44% yield as a mixture of diastereomers. Treatment of 20 with acetyl chloride/pyridine produced isodehydroilludin M (12) in 65% yield. The details of this synthesis will be published elsewhere.

Scheme 2: (a)1. 13, Rh₂(OAc)₄ (cat.), CH₂Cl₂, rt, 55%; 2. MeMgCl, THF, 0 °C-rt; then 10% KOH/MeOH, reflux, 63%; (b) PCC, CH₂Cl₂, rt, 44%; (c) AcCl, pyridine, 0 °C-rt, 65%.

The *in vitro* antitumor activity of analogues 2-12 and Adriamycin is presented in the table below. The melanoma, lung, breast, and colon human solid tumor cell lines were selected because they are among the most difficult

tumors to treat in the clinic. Six of the seven bicyclic illudin analogues possessed low micromolar IC_{50} values in the cell lines tested. The fused cyclopentane ring is not required for antitumor activity. The most cytotoxic bicyclic illudins were those where the substituent was small (R = Me, vinyl). The alkyne and aryl substituents rendered the analogues less potent.

Table:	IC50 (uM)	Values for Illudir	Analogues in	Human Tumor	Cell Lines ¹⁴
--------	-----------	--------------------	--------------	-------------	--------------------------

compound	A375 (melanoma)	A549 (lung)	MB-231 (breast)	SW480 (colon)
2	0.55	0.2	0.45	0.3
5	1.0	0.2	0.3	0.03
6	0.004	0.15	0.11	0.12
7	0.13	0.11	0.3	0.03
8	0.018	0.002	0.028	0.18
9	>10	1.5	4.0	2.5
10	>10	>10	>10	>10
11	2.0	3.0	2.0	4.0
12	0.032	0.25	2.0	0.06
adriamycin	0.07	0.12	0.15	0.06

The most dramatic SAR discovery was that the orientation of electrophilic centers common to all antitumor illudins is not a requirement for antitumor activity. In fact, isodehydroilludin M (12) was nearly an order of magnitude more potent in the melanoma and colon lines than dehydroilludin M (2). In summary, it has been shown that simplified analogues of the antitumor illudins can be easily prepared and are generally equal or greater in potency to dehydroilludin M. Additional results will be reported at a later date.

Acknowledgement: We thank Michael J. Newman for providing us with the biological data and Michael J. Shapiro for providing us with nmr data.

References and Notes:

- 1. Anchel, M.; Hervey, A.; Robbins, W. J. Proc. Natl. Acad. Sci. U.S.A. 1950, 36, 300.
- 2. McMorris, T. C.; Anchel, M. J. Am. Chem. Soc. 1963, 85, 831.
- 3. Nakanishi, K.; Ohashi, M.; Tada, M.; Yamada, Y. Tetrahedron 1965, 21, 1231.

- Matsumoto, T.; Shirahama, H.; Ichihara, A.; Tukuoka, Y.; Takahashi, Y.; Mori, Y.; Watanabe, M. Tetrahedron 1965, 21, 2671.
- 5. Kelner, M. J.; McMorris, T. C.; Taetle, R. J. Natl. Cancer Inst. 1990, 82, 1562.
- McMorris, T. C.; Kelner, M. J.; Wang, W.; Estes, L. A.; Montoya, M. A.; Taetle, R. J. Org. Chem. 1992, 57, 6876.
- McMorris, T. C.; Kelner, M. J.; Chadha, R. K.; Siegel, J. S.; Moon, S.; Moya, M. M. Tetrahedron 1989, 45, 5433.
- 8. McMorris, T. C.; Kelner, M. J.; Beck, W. T.; Zamora, J. M.; Taetle, R. Cancer Res. 1987, 47, 3186.
- 9. Kelner, M. J.; McMorris, T. C.; Estes, L.; Starr, R. J.; Rutherford, M.; Montoya, M.; Samson, K.M.; Taetle, R. Cancer Res. 1995, 55, 4936.
- 10. Kinder, F. R.; Bair, K. W. J. Org. Chem. 1994, 59, 6965.
- 11. For a review see Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.
- 12. Compound 5: ¹H NMR (300MHz, CDCl₃) δ6.96 (s, 1H), 6.42 (s, 1H), 3.57 (s, 1H), 1.68 (s, 3H), 1.37 (s, 3H), 1.15 (m, 1H), 0.96 (m, 1H), 0.83 (m, 1H), 0.44 (m, 1H). ¹³C NMR (75MHz, CDCl₃) δ200.9, 145.3, 132.4, 124.4, 117.7, 75.1, 31.4, 24.6, 20.0, 9.5, 6.6.
 - Compound 6: 1 H NMR (300MHz, CDCl₃) $\delta 6.55$ (q, J = 9Hz, 1H), 6.30 (s, 1H), 3.72 (s, 1H), 1.87 (d, J = 9Hz, 3H), 1.63 (s, 3H), 1.35 (s, 3H), 1.10 (m, 1H), 0.95 (m, 1H), 0.83 (m, 1H), 0.40 (m, 1H). 13 C NMR (75MHz, CDCl₃) $\delta 202.5$, 140.3, 131.6, 130.7, 118.3, 74.5, 30.6, 24.3, 9.6, 13.3, 8.6, 6.0.
 - Compound 7: 1 H NMR (300MHz, C₆D₆) δ 6.55 (d, J = 11Hz, 1H), 6.21 (s, 1H), 4.04 (s, 1H), 2.52 (m, 1H),1.44 (s, 3H), 1.35 (s, 3H), 1.30 (m, 1H), 1.03 (m, 1H), 0.84 (d, J = 7.5 Hz, 6H), 0.75 (m, 1H), 0.24 (m, 1H). 13 C NMR (75MHz, CDCl₃) δ 203.2, 142.7, 140.4, 128.7, 118.6, 74.7, 30.7, 26.9, 24.5, 22.4, 22.1, 19.7, 8.7, 6.1.
 - Compound 8: ¹H NMR (300MHz, C_6D_6) $\delta 7.04$ (d, J = 12.5Hz, 1H), 6.56 (m, 1H), 6.22 (s, 1H), 5.24 (m, 2H), 3.96 (s, 1H), 1.39 (s, 3H), 1.30 (m, 1H), 1.26 (s, 1H), 0.98 (m, 1H), 0.70 (m, 1H), 0.21 (m, 1H). ¹³C NMR (75MHz, C_6D_6) $\delta 202.8$, 142.4, 131.3, 130.7, 130.0, 125.2, 119.2, 75.0, 31.3, 24.8, 19.6, 9.2, 6.5.

Compound 9: ¹H NMR (300MHz, CDCl₃) 87.40 (m, 5H), 6.73 (s, 1H), 3.78 (s, 1H), 1.67 (s, 3H), 1.41 (s, 1H), 1.22 (m, 1H), 0.98 (m, 1H), 0.87 (m, 1H), 0.25 (m, 1H). ¹³C NMR (75MHz, CDCl₃) 8204.1, 143.7, 135.8, 131.5, 130.3, 130.2, 128.8, 128.7, 119.8, 75.2, 31.4, 24.9, 20.2, 9.4, 6.6.

Compound 10: ${}^{1}H$ NMR (300MHz, CDCl₃) δ 7.47 (d, J = 7.5Hz, 1H), 7.42 (s, 1H), 7.33 (d, J = 5.5Hz, 1H), 7.06 (dd, J = 7.5 and 5.5Hz, 1H), 6.92 (s, 1H), 3.80 (s, 1H), 1.75 (s, 3H), 1.37 (s, 3H), 1.22 (m, 1H), 1.02 (m, 1H), 0.88 (m, 1H), 0.49 (m, 1H). 1 3C NMR (75MHz, CDCl₃) δ 203.3, 143.9, 138.9, 133.4, 129.9, 127.6, 126.5, 123.8, 120.1, 74.9, 31.2, 24.9, 20.4, 9.4, 6.6.

Compound 11: 1 H NMR (300MHz, CDCl₃) $\delta 6.59$ (s, 1H), 6.22 (d, J = 2Hz, 1H), 3.82 (q, J = 8Hz, 2H), 3.63 (s, 1H), 2.79 (dt, J = 8 and 2Hz, 2H), 1.75 (t, J = 8Hz, 1H), 1.71 (s, 3H), 1.35 (s, 3H), 1.17 (m, 1H), 0.97 (m, 1H), 0.84 (m, 1H), 0.44 (m, 1H). 13 C NMR (75MHz, CDCl₃) $\delta 202.1$, 144.9, 138.6, 121.0, 110.7, 101.0, 79.6, 74.9, 60.9, 31.5, 24.6, 24.5, 19.7, 9.4, 6.5.

- 13. Compound 12: ¹H NMR (500MHz, CDCl₃) δ6.40 (s, 1H), 5.30 (s, 1H), 3.25 (s, 1H), 2.74 (d, J = 19Hz, 1H), 2.53 (d, J = 19Hz, 1H), 1.35 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H), 1.05 (m, 2H), 0.97 (m, 1H), 0.24 (m, 1H). ¹³C NMR (75MHz, CDCl₃) δ212.0, 202.5, 151.8, 144.6, 138.7, 115.8, 75.5, 45.8, 38.8, 31.8, 25.4, 25.1, 24.9, 12.6, 4.2.
- 14. Ethanol solutions of illudin analogues were added to ATCC A375, A549, MDA-MB-231, and SW480 cells at day 1 after plating of cells. Three days after illudin analogue addition, growth inhibition was determined through the measurement of cell density using MTS (see Promega Technical bulletin) mixture. See Mossman, T. J. Immunol. Meth. 1983, 65, 55 and Cory, A. H.; Owen, T. C.; Barltrop, J. A.; Cory, J. G. Cancer Commun. 1991, 3, 207.

(Received in USA 6 March 1996; accepted 1 April 1996)